

Life Cycle-Based Sustainability Indicators for Assessment of the U.S. Food System

Gregory A. Keoleian and Martin C. Heller Center for Sustainable Systems

School of Natural Resources and Environment University of Michigan

October 6-8, 2003 Horsens, Denmark

Outline

- Sustainable Food System Framework and Indicators
- Assessment of US Food System Sustainability Indicators
 - Production and Consumption
 - Economic, Social, Environmental
- Conclusions and Recommendations

Center for Sustainable Systems University of Michigan

Life Cycle-Based Sustainability Indicators for Assessment of the U.S. Food System

Martin C. Heller and Gregory A. Keoleian

AVAILABLE: http://css.snre.umich.edu do publication search for: FOOD

AGRICULTURAL SYSTEMS

A gricultural Systems 76 (2003) 1007-1041

www.elsevier.com/locate/agsy

Assessing the sustainability of the US food system: a life cycle perspective

Martin C. Heller* and Gregory A. Keoleian

Center for Sustainable Systems, School of Natural Resources and Environment, University of Michigan, 430 East University, Ann Arbor, MI 48109-1115, USA

Accepted 15 March 2002

Abstract

The US food system, from field to table, is at a crossroads for change. Improving the sustainability of this complex system requires a thorough understanding of the relationships between food consumption behaviors, processing and distribution activities, and agricultural production practices. A product life cycle approach provides a useful framework for studying the links between societal needs, the natural and economic processes involved in meeting these needs, and the associated environmental consequences. The ultimate goal is to guide the development of system-based solutions. This paper presents a broad set of indicators covering the life cycle stages of the food system. Indicators address economic, social, and environmental aspects of each life cycle stage: origin of (genetic) resource; agricultural growing and production; food processing, packaging and distribution; preparation and consumption; and end of life. The paper then offers an initial critical review of the condition of the US food system by considering trends in the various indicators. Current trends in a number of indicators threaten the long-term economic, social, and environmental sustainability of the US food system. Key trends include: rates of agricultural land conversion, income and profitability from farming, degree of food industry consolidation, fraction of edible food wasted, diet related health costs, legal status of farmworkers, age distribution of farmers, genetic diversity, rate of soil loss and groundwater withdrawal, and fossil fuel use intensity. We suggest that effective opportunities to enhance the sustainability of the food system exist in changing consumption behavior, which will have compounding benefits across agricultural production, distribution and food disposition stages.

© 2002 Elsevier Science Ltd. All rights reserved.

The Food System Life Cycle

Origin of (genetic) resource Agricultural growing and production

Food processing, packaging and distribution Preparation and consumption End of life

• Sustainable system - one that can be maintained at a certain state or quality on a long-term time horizon

• this "quality" can often be evaluated by following trends in certain indicators

Life cycle	SUSTSAINABILITY INDICATORS											
stage	Economic	Social	Environmental									
Origin of (genetic) resource	•degree of farmer/operator control of seed production/breeding	•Diversity in seed purchasing and seed	atio of naturally pollinated plants to genetically hodified/ hybrid plants per acre reproductive ability of plant or animal % of disease resistant organisms ate of soil loss vs. regeneration soil microbial activity, balance of nutrients/acre •quantity of chemical inputs/ unit of production •air pollutants/ unit of production •number of species/acre •water withdrawal vs. recharge rates •# of comtaminated or eutrophic bodies of surface water or groundwater									
Agricultural growing and production	 Rates of agricularity land conversion level of governation support 	a ield and / income vs. other professions rs on farms health benefits. ian community organizations										
	PracticesIevel of gov't support	 programs, encourage sustainable practices *# animals/unit, time animals spend outdoors (animal welfare) 	 veterinary costs energy input/ unit of production ratio of renewable to non-renewable energy portion of harvest lost due to pests, diseases 									
Food processing, packaging and distribution	 relative profits received by farmer vs. processor vs. retailer geographic proximity of grower, processor, packager, retailer 	•quality of life and worker satisfaction in food processing industry •nutritional value of food product •food safety	•Energy requirement for processing, packaging and transportation									
Preparation and consumption	 portion of consumer disposable income spent on food % of food dollar spent outside the home 	Rates of malnutritionrates of obesity	•energy use in preparation, storage, refrigeration •packaging waste/ calories consumed •ratio of local vs. non•local and seasonal vs. non•seasonal consumption									
End of life	•ratio of food wasted to food	•health costs from diet related conditions	•Amount of food waste composted vs. sent to									
	consumed in the US •\$ spent on food disposal	food gatherers	treatment									

The Food System Life Cycle

- Rapid conversion of prime farmland between '82-'92: 45.7 acres every hour
 - + 3 acres/hour of unique farmland
- Increasing number of farms reporting a net loss (48% in '97)
- 84% of farm operator household income from offfarm sources.
- Sharply rising government payments in recent years (\$25 billion in 2001, 3rd consecutive year of record high payments)

Economic indicators

production

What a dollar spent for food paid for in 1998

(\$0.40 in 1975)

- Number of farms decreasing, size increasing
- Average age of farmers increasing 54.3 in 1997
 (61% over 55 vs. 12% in total labor force)
- 52% hired farmworkers lack legal authorization to work in US

	1950	1974	1987	1997
Number of farms (in 1,000)	5388	2314	2213	2058
Land in farms (in 1000 ha)	470000	412000	404000	392000
Average farm size (ha)	87	178	183	193
U.S. capita per farm	28	94	111	132

In 1997:

- 3.6% of farms that sell >\$500,000: control 57% market value, 19.4% total farmland, average \$373,700 net cash return
- 73.6% of farms that sell <\$50,000: 6.8% market value, 28% total farmland, average \$850 net loss

Farm wages vs. other professions(ave. wages in 1997)Farmworkers\$7.36Mining\$16.15Construction\$16.04Manufacturing\$13.17Food & kindred products\$11.48

production

- Soil erosion exceeding regeneration
 1.9 billion tons in 1997
- if evenly distributed, losing 2.5 cm topsoil every 34 years; 300-1000 yrs. to create 2.5 cm under natural conditions, under normal ag. conditions, 100+ yrs. to create 2.5 cm
- Rate of groundwater withdrawal exceeding recharge in critical regions
- 1995: 134 billion gallons/day freshwater withdrawn for irrigat. 37% from groundwater; 39% of total US freshwater withdrawl
- Rise in regional areas where manure nutrient load
 exceeds *potential* plant uptake

Significant contribution to greenhouse gas emissions

- Agricultural activities responsible for 7.7% total US Green House Gas emissions in 1997
- **Benefits and costs of pesticides**
 - Despite 10x increase in insecticide use from 1945-1989, total crop losses from insect damage have almost doubled

- Fraction of disposable income spent on food decreasing (10.7% in '96 vs. 13.8% in '70)
- Costs of diet-related diseases/ conditions increasing

diet related medical costs, loss of productivity, value of premature deaths - \$71 billion annually

direct health care costs of obesity alone -\$39-52 billion annually

Portion of Total Personal Consumption Expenditures Spent on Consumed at Home, 1994

Year	% disposable income spent on food
1996	10.7
1990	11.6
1970	13.8
1930	25

• The average American needs 40
days of earnings to pay for his/her
family's food bill for the year
(130 days for federal taxes)

country	Food (%)
United States	7.4
United Kingdom	11.2
Sweden	14.6
France	14.8
Australia	14.9
Germany	$17.3^{2/}$
Japan	$17.6^{-3/}$
Israel	20.5
Switzerland	24.4 ^{3/}
Mexico	24.5
South Africa	27.5
Greece	31.7
Venezuela	38.2 ^{2/}
India	51.3
2/ 1 1 1 1	1 1 1 . C 1

^{3/} food includes alcoholic beverages and tobacco

consumption

- Significant population are food insecure
- \$37.2 bill. in federal nutrition assistance programs reach 1 in 5
- 9.7% of US households were food insecure, 1996-98
- 3.5% of US households went hungry at some time during year
- Increasing trend in away-from-home food
- Prepared and convenience foods 12.5% of at-home food expenditures (1995)
- \$7 billion on food advertising in 1997
- prevalence of overweight/ obesity on the rise
- between 1970 and 1997:

•per capita meat consumption inc. by 15 lbs. to 192 lbs.

•114% per capita inc. in carbonated soft drinks

in 1998, 154 lbs. caloric sweetners - 53 teaspoons per day

- 26% total available edible food wasted at consumer level
- estimated cost of discarding food waste through MSW channels only: \$780 million

Total System - energy

Life Cycle Management: Consolidation

Conclusion

Numerous indicators suggest that trends in the US food system are unsustainable

	Economic	Social	Environmental
Production	– Rapid conversion of	– 52% of farmworkers	– depletion of topsoil
	prime farmland	are illegal	exceeds regeneration
	– 84% of farm	– age of farm	– rate of groundwater
	household income	operators increasing;	withdrawal exceeding
	earned off-farm	declining entry of	recharge in major
	– Increasing number of	young farmers	agricultural regions
	farms report a net loss		– losses to pests
	(48% in 1997)		increasing
			– reduction in genetic
			diversity
Consumption	– Costs of diet related	– Obesity rates rising	– 26% edible food
	diseases increasing	– Diet deviates from	wasted
		nutritional	
		recommendations	
Total system	– Marketing is 80% of	– Relation with food	– Heavy reliance on
	food bill	and its origin has been	fossil energy
	– Industry consolidation	lost	– 7.3 units of energy
	in food system threatens		consumed to produce
	market competition		one unit of food
			energy

Summary of Key Indicators showing Unsustainable Trends of the U.S. Food System

Conclusions

- Greatest leverage point lies with reducing consumption and waste
 - Reduction by one third is not unrealistic
- Systems based solution
 - Reduce consumption and waste, while maintaining revenues to farmers for less food output

Center for Sustainable Systems

http://css.snre.umich.edu

Defining Sustainable Systems

"set of integrated human-designed and ecological processes for meeting human needs while maintaining the long term integrity of the planet's life support system" - CSS (1999)

Production/Consumption Processes and Material/Energy Flows Raw Material **Air pollutants** Acquisition (e.g., Hg) **Primary Materials** Water pollutants (e.g., ores, biotic resources) (e.g., BOD) **Material** Manufacture & Assembly Processing **Recycled Materials** Solid waste (open loop recycling) recycling remanufacture (e.g., MSW) Retirement **Primary Energy** Use & Recovery (e.g., coal) **Products** (e.g., goods, services) reuse **Co-products** Disposal **Service** (e.g., recyclables, energy)

Processes and flows are spatially and temporally distributed

Guiding Sustainable Systems

Body Mass Index

 $BMI = Weight in kilograms \div [Height in meters]^2$

Body Mass Index (BMI) Table

BMI	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
Height Weight (in pounds)																	
4'10" (58")	91	96	100	105	110	115	119	124	129	134	138	143	148	153	158	162	167
4'11" (59")	94	99	104	109	114	119	124	128	133	138	143	148	153	158	163	168	173
5' (60'')	97	102	107	112	118	123	128	133	138	143	148	153	158	163	168	174	179
5'1" (61")	100	106	111	116	122	127	132	137	143	148	153	158	164	169	174	180	185
5'2" (62")	104	109	115	120	126	131	136	142	147	153	158	164	169	175	180	186	191
5'3" (63")	107	113	118	124	130	135	141	146	152	158	163	169	175	180	186	191	197
5'4" (64")	110	116	122	128	134	140	145	151	157	163	169	174	180	186	192	197	204
5'5" (65")	114	120	126	132	138	144	150	156	162	168	174	180	186	192	198	204	210
5'6" (66")	118	124	130	136	142	148	155	161	167	173	179	186	192	198	204	210	216
5'7" (67")	121	127	134	140	146	153	159	166	172	178	185	191	198	204	211	217	223
5'8" (68")	125	131	138	144	151	158	164	171	177	184	190	197	203	210	216	223	230
5'9" (69")	128	135	142	149	155	162	169	176	182	189	196	203	209	216	223	230	236
5'10" (70")	132	139	146	153	160	167	174	181	188	195	202	209	216	222	229	236	243
5'11" (71")	136	143	150	157	165	172	179	186	193	200	208	215	222	229	236	243	250
6' (72'')	140	147	154	162	169	177	184	191	199	206	213	221	228	235	242	250	258
6'1" (73")	144	151	159	166	174	182	189	197	204	212	219	227	235	242	250	257	265
6'2' (74'')	148	155	163	171	179	186	194	202	210	218	225	233	241	249	256	264	272
6'3' (75")	152	160	168	176	184	192	200	208	216	224	232	240	248	256	264	272	279

Obesity

Underweight Overweight Obese BMI less than 18.5BMI of 25.0 to 29.9BMI of 30.0 or more

Vertical Integration - the food chain "clusters"

ConAgra market share

#2 in flour milling, dry corn milling, beef packers

#3 in cattle feedlots, pork packers

#5 in boiler chicken production and processing

big distributor of chemicals, fertilizers and seeds

#2 in food processing

Cargill market share

#1 in grain elevators, animal feed plants

#2 in wet corn milling, dry corn milling, soybean crushing

#3 in flour milling

#4 in turkey production, pork packers

ADM market share

#1 in flour milling, wet corn milling, soybean crushing, ethanol production

#2 in grain elevators

#3 in dry corn milling